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Abstract-Aircraft engine disks frequently show multiple failures when collapsing due to a radial
crack. This subject has been treated previously by a simplified theory including bending effects only.
In this article a more elaborate analysis has been performed, including extensional, torsional, shear
and rotational inertia effects. It is shown that, contrary to the simplified theory, the wave speed
remains finite for high wave numbers. An explicit finite difference scheme of the governing differential
equations is derived and the conditions for its stability are examined. Application to the stress
analysis of a rotating disk immediately after radial failure reveals that a propagating and gradually
increasing axial stress maximum emanates from the crack which will generally lead to additional
failures at about 100-140° away from the first failure.

1. INTRODUCTION

Aircraft engine disk testing in spin pit facilities has shown that the disks frequently break
up in more than two parts when failing. In a lot of cases three equally sized parts were
recovered. This phenomenon has already been treated recently by means of a simplified
theory (Kohl and Dhondt, 1993). It was shown that after a radial failure, the bending
moment increases rapidly and exhibits a maximum which moves away from the crack
while increasing continuously. This frequently leads to additional failures about 1200 away
from the first failure. However, a drawback of the simplified theory is the prediction of
an infinite wave speed for large wave numbers which causes the whole disk to respond
instantaneously to a locally confined disturbance.

The theory in the present article uses all six degrees of freedom in each point of the
axis of the disk (three displacements and three rotations), and was first introduced by
Bickford and Strom (1975). It leads to six coupled partial differential equations to be
complemented by the appropriate initial and boundary conditions and includes extensional,
torsional, shear and rotational inertia effects. It yields a finite wave speed even for large
wave numbers.

In the following sections the governing equations are given and an explicit finite
difference scheme is introduced. Satisfaction of the Neumann stability yields a maximum
size of the time step. Application of the method to the problem of a sudden radial failure
in an aircraft engine disk shows that, soon after the failure, the in-plane bending moments
and axial stresses exhibit a maximum along the disk which increases and propagates away
from the crack. The present theory agrees with the earlier simple theory in that this
phenomenon will frequently lead to a second failure about 100-1400 away from the first
failure. However, due to the finite wave speed the propagating maximum is more outspoken,
though not increasing so fast.

2. GOVERNING EQUATIONS

The basic theory has been developed by Bickford and Strom (1975). The aircraft engine
disk is modelled as a curved beam with constant curvature k (Fig. 1). The motion of a
point of the beam is expressed as a Taylor series about the centerline. Only linear terms are
kept. Furthermore, it is assumed that the in-plane strains are negligible;

(1)
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Fig. I. Curved beam segment with local axes and displacements.

U(x, y, z, t) = U(z, t) - yO(z, t)

V(X, y, z, t) = v(z, t) +xO(z, t)

W(x, y, z, t) = w(z, t) - xcp(z, t) +n(z, t) (2)

where U, Vand Ware the displacements of an arbitrary point of the beam, whereas u, D,

wand X, cp, 0 represent the displacements and rotations of a point on the axis, respectively.
The nonzero strains can be expressed as

gezz = W' -kU-Xcp' +Y(X' +kO)

2gexz = ul+kw-cp-y(O'_kxJ

2geyz = v' +X+X(O' - kxJ (3)

where 9 = l-kx, and I = %z. The force resultants are introduced by (the Poisson effect
in the normal stress-strain relationship has been discarded)

N = f f azz dA = f f Eezz dA

Vx = ffaxz dA = f f2Gexz dA

Vy = ffayz dA = ff2Geyz dA

Mx = f fyazz dA = f f Eyezz dA

My = - f f xazz dA = - f fExezz dA

T = ff (xayz - yaxz) dA = f f2G(xeyz - yexz) dA (4)

where E is Young's modulus, G is the shear modulus and A the cross sectional area.
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Substitution of eqn (3) into eqn (4) yields

N = EIoo(w' -ku) -EqJ'lIO+E(X' +kO)Iol

Vx = G(u' +kw-qJ)Ioo -G(O' -kX)Iol

Vy = G(v' + X)Ioo +G(O' -kX)IIO

M x = EIol (w' -ku) -EqJ'I11 +E(X'+k()I02

My = -E(w' -ku)I\0+EqJ'I20 -E(X'+k()I11

T = G(v' +X)Ilo +G«()' -kX)(I20 +102 ) - G(u' +kw- qJ)Io1

where

1951

(5)

(6)

Application of Hamilton's Principle to the rotating disk leads to six coupled partial differ­
ential equations:

G(u" +kw' -qJ')Ioo -G«()" -kX')Io1 +kEIoo(w' -ku) -kEqJ'IIO+kE(X'+k()Io1

-Apu-pkJl1 (}· = P;

G(v" +X')Ioo +G«()" -kX')I10 - Apv+ pkJ20U= 0;

EIoo(w" -ku') -EqJ"IIO+E(X" +k()')Iol -kG(u' +kw-qJ)Ioo +kG«()' -kX)Io1

-Apw+pkJlti-pkJ20 ii> = 0;

E(w" -ku')Iol -EqJ"I11 +E(X"+k()')I02 +kG(v'+X)IIO

+kG«()' -kX)(I20 +102 ) -kG(u' +kw-qJ)Io1 -G(v' +X)Ioo - G«()' -kX)Ilo

-p(J02-kJ12)X+P(Jll-kJZl)ii>+pkJIIW = 0;

-E(w" -ku')Ilo+EqJ"I20 -E(X" +k()')III +G(u'+kw-qJ)Ioo-G«()' -kX)Iol

-p(J20-kJ30)ii>+P(Jll-kJ21)X-pkJ20W = 0;

G(v" +X')IIO +G«()" -kX')(Izo +102 ) - G(u" +kw' -qJ')Io1 -kE(w' -ku)Iol

+kEqJ'III -kE(X' +k()I02 - p(J-k(JI2 +J30»U- pkJI1U+ pkJ20v = 0 (7)

where

• = OIat, J = J 02 +J20 and p is the mass density. p represents the centrifugal loading

p = 2npVF

(8)

(9)

where f is the frequency (Hz) and V the total volume of the disk.
In the governing eqns (7), the effects of shear deformation, rotational inertia and

extensionality are included. They have to be complemented by the appropriate boundary
and initial conditions.

The problem of the failing disk is symmetric about the failure (Fig. 2). Immediately
after cracking, the boundary conditions can be expressed as

N = Vx = Vy = M x = My = T = 0 at z = 0

~=~=w=X=qJ=~=O ~z=L (10)
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Fig. 2. Boundary conditions at z = 0 and z = L.

where L is half the circumference of the disk. The initial conditions (immediately before
cracking) amount to

u = Uo

() = ()o

v=w=X=<p=O

~=~=~=i=~=6=o ~t=O

where

p ( 102 )Uo = -2- 2
k E lo! -100102

() _ L ( lo! )
0- 2 2k E lo, -100 / 02

are the radial displacement and torsion angle before failure.

3. DISCRETlSATION OF THE GOVERNING EQUATIONS

Equations (7) can be written in the form

where

U P
v 0

w 0
y= p=

0X
<p 0
() 0

(11)

(12)

(13)

(14)
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-Ap 0 0 0 0 -pkJII

s -Ap 0 0 0 pkJ20

S s -Ap pkJll -pkJ20 0
[lId = s s s -p(J02 -kJd P(J I1 -kJ21 ) 0

s s s S -p(J20 -kJ30) 0

S S S S S -P(J-k(J12+ J 30))

(15)

[H2] =
0 0 k(G+E)/oo k(G+E)/ol - (Gloo +kEI I0) 0

a 0 0 - G(kIlO - 100) 0 0

a a 0 0 0 k(G+E)/ol

0 0 kEl02 +kG(l20+ 102) -Gl lo
,

a a a

a a a a 0 - (kEI II +GloI)

a a a a a 0

(16)

Gloo 0 0 0 0 -Glol

s Gloo 0 0 0 GI lo

S s Eloo Elol -Ello 0
[H 3] = s s El02 -EIII 0

(17)
s

s s s S EI20 0

S S S S s G(l20+ 102)

-PEloo 0 0 0 0 k 2Eloi

S 0 0 0 0 0

s s -k2Gloo -k2Glol kGloo 0
[1141 = s s S G(2k/ l 0-100-kV20+102)) kGlol 0

s S s s -Gloo 0

s s s s S -k2El02

(18)

[HJl, [H3] and [lI4] are symmetric (symbol s), [lI2] is antisymmetric (symbol a). Dis-
cretisation of the partial derivatives in eqn (13)

Y' I
= 2/ (Yr,s+ I - Yr,s- d

Y" I )= fi (Yr,s+ 1-2Yr,s +Yr,s- I , (19)

where hand / are the step sizes in t and z, respectively and V"~S denotes the value of Y at
the discretisation point (r, s) (r changes with t and s with z), leads to the following explicit
scheme:

[cx]Yr + I,s = p- [P]Yr,s- I - [y]Yr,s - [<>]Yr,s+ I - [e]Yr_ I.s (20)
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(21)

The boundary conditions [eqn (10)] at z = 0 (corresponds to s = 0) together with eqn (5)
can be written as

[A]Yr._ 1+ [B]Yr . o+ [C]Yr • 1 = 0

where

-G/oo 0 0 0 0 Glol
0 -G/oo 0 0 0 -G/ lo

1 0 0 -Eloo -Elol Ello 0
[A] = 2t 0 0 -Elo1 -El02 Ell I 0

0 0 Ello Ell I -E120 0

Glol -G/lo 0 0 0 - G(I02 +120)

0 0 kG/oo kG/ol -G/oo 0

0 0 0 G(Ioo-kl lo) 0 0

-kEloo 0 0 0 0 kElol
[B] =

-kElol 0 0 0 0 kEl02

kEl lo 0 0 0 0 -kEIII

0 0 -kG/ol G[/I 0-k(I02 +120)] GlOl 0

[C] = -[A].

(22)

(23)

(24)

(25)

Once Yr,s, -1 ~ s ~ n+ 1 are known, eqn (20) allows for the solution ofY r + I,... 0 ~ S ~ n.
The boundary conditions at z = 0 [eqn (22)] yield Y r+ 1,_ I' The boundary conditions at
z = L (corresponds to s = n) [eqn (10)] consist of Dirichlet conditions for w, X and qJ and
Neumann conditions for u, v and e. The Dirichlet condition e.g. for w, leads to an explicit
substitution of W r + I.n and, by expressing the first spatial derivative at z = L with two
different schemes (both of second order accuracy)

3wr + I.n + W r+ I,n- 2 -4wr+ I.n- I W r+ I,n+ 1- W r+ I.n- I

21 21

to W r+ l,n+ l' The Neumann conditions, e.g. for u, lead to

ur+ I,n+ I = Ur+ I,n- I'

(26)

(27)

In this way all values ofYr + 1,.1" -1 ~ s ~ n+ 1 are determined.
The Dirichlet initial conditions are easily satisfied. The Neumann initial conditions are

satisfied by taking the same values for two consecutive time steps at the start.
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4. NUMERICAL STABILITY

The numerical stability of the explicit scheme is checked by applying the Neumann
stability test (Lapidus and Pinder, 1982). To this end a solution of the form

(28)

is substituted into the homogeneous form of eqn (20). Solutions of ~ as a function of the
arbitrary parameter J1. are looked for. The Neumann stability requires the nonexistence of
growing homogeneous solutions, i.e.

I~I ~ 1

for all J1. must be satisfied. A non-trivial solution is obtained for

Substitution of eqn (21) into eqn (30) leads to

where

Equation (31) is a generalised eigenvalue equation of the form

I[G] -A[H]I = 0

(29)

(30)

(31)

(32)

(33)

where [G] is hermitian and [H] is symmetric and positive definite since the total kinetic
energy of the beam can be expressed as (Bickford and Strom, 1975)

(34)

Thus the eigenvalues Aof eqn (31) are real (Zurmiihl and Falk, 1984). Equation (29) can
be satisfied only if

(35)

for all values of J1.. Making the substitution J1.1 = 1/;, for a given beam geometry and step
sizes h and I, the explicit scheme will be numerically stable if all eigenvalues Aof

satisfy eqn (35) with 0 ~ I/; ~ n. This condition is satisfied for a small enough time step h.

5. DISPERSION CURVES

The dispersion curves are obtained by substituting the wave form

Y(z, t) = X ei(YZ-wl)

SAS 31: 14-6

(37)
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into the homogeneous form of eqn (13). This leads to a non-trivial solution only if

(38)

This is again an equation of the form in eqn (33) and yields real eigenvalues for A= w 2• In
the remainder of this article the following non-dimensionalised forms of the wavenumber
y, the circular frequency wand wave velocity C will be used:

where

y= Ky

_ wK
w=~~

Co

C w
(5=-=-

Co YCo

K=f!t

Co = 11·

(39)

(40)

(41)

(42)

(43)

6. DISK WITH A RECTANGULAR CROSS SECTION

For a first qualitative understanding a small disk with a simple rectangular cross
section (Fig. 3; all dimensions are in mm) is analysed. For the material properties
E = 210000 MPa, v = 0.3 and p = 8000 kg/m 3 were taken. The rotational speed was
f = 52180 revolutions/min. For the present geometry k = 0.05 mm- 1

•

The stability curves for 1= n/IOOk and h = 0.25 10- 7 s are depicted in Fig. 4. Since
IAI ~ 1 these step sizes yield a stable explicit scheme. For larger h-values the curves move
downwards into the negative A-range to yield an unstable scheme for A< - 1.

The dispersion curves in Fig. 5 agree very well with the ones found by Graff (1970).
For large wave numbers the wave velocity remains finite. This is not the case for the
simplified theory published earlier (Kohl and Dhondt, 1993) for which the dispersion curves
are represented in Fig. 6. The improvement of the present theory is largely due to the
inclusion of the rotational inertia and shear deformation and is comparable with the

20

30

10

Fig. 3. Disk with rectangular cross section.
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Fig. 4. Stability curves for h = 0.25 X 10- 7 s.
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Fig. 6. Dispersion curves for the simplified theory.
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Fig. 7. Tangential in-plane displacement u.
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difference between the Bernoulli-Euler and Timoshenko beam theories for the straight
beam (Graff, 1975).

Figures 7-12 show the displacements and internal forces immediately after fracture
as a function of the angle t/J = kz (Fig. 2). Fracture itself was not introduced suddenly but
was spread out over about 200 time steps. The finite wave speed allows for a gradual
propagation of the fracture signal. It results in a slower growth of the internal forces as can
be seen by comparing Fig. 12 with Fig. 13, the latter of which represents the in-plane
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Fig. 12. In-plane bending moment My.

bending moment obtained by the simplified theory. However, just like in the simplified
theory, the bending moment has a maximum over the disk range, which propagates gradu­
ally towards z = L. The same observation applied to the axial stresses at the inside of the
beam (Fig. 14). The growing axial stress exceeds its pre-fracture value at about 60° away
from the fracture location and increases steadily while propagating towards the symmetry
plane.

Table 1 gives the location and the value of the stress maximum at different times.
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Fig. 13. In-plane bending moment in the simplified theory.
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Table I. Location and value of the axial stress maximum

3.500

Time (s)
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()
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130

Maximum stress!
pre-fracture stress
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1.47
1.74
1.94
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Fig. 14. Axial stress (J".

Assuming a disk design such that the pre-fracture stress amounts to the proportional
limit of the material and taking the value of the ultimate tensile strength divided by the
proportional limit to be in the range 1.2-2.0, it is clear that an additional fracture will occur
at about 90°-140°.

7. ENGINE DISK

The same engine disk (Fig. 15) already treated in a previous article (Kohl and Dhondt,
1993) was examined with the present theory. At first a simplified geometry, not taking the
asymmetry into account, was introduced (k = 0.01919 mm - I) and the axial stress at the
inside of the disk immediately after failure was calculated (Fig. 16). It exhibits the same
characteristics as in the case of the rectangular disk; at z = 0 the stress is reduced to zero.
After some time the stress starts to exceed the pre-failure value at about 70° away from the
crack. This maximum increases steadily and propagates towards the symmetry plane. Again,
for high design stresses, an additional failure about 120° away from the crack is very likely.
A more accurate model (Fig. 15) included the asymmetry of the cross section (k = 0.01989
mm -I) and led to the torques depicted in Fig. 17. The axial stresses (e.g. in point A, Fig.
18) increased but show the same characteristics as in the simplified geometry model.
Depending on the yield strength of the material, plasticity will occur in the bore region.
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simplified geometry

A

more accurate model

Fig. 15. Engine disk with simplified and more accurate model.
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Fig. 16. Axial stresses in the engine disk after fracture (simplified geometry).
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Fig. 18. Axial stresses in the engine disk (point A) after fracture.

8. CONCLUSIONS

A higher order theory including extensional, torsional, shear and rotational inertia
effects was used to analyse the problem of a radially failing rotating disk. The governing
differential equations were approximated by means of finite differences. It was shown that,
after a first failure, a stress maximum propagates along the disk which will frequently lead
to a second failure about 100°-140° away from the first failure.
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